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SUMMARY

A new method is presented for calculating the quasi-steady transonic flow over a lifting or

nonlifting rotor blade in both hover and forward flight by using Euler equations. The approach

is to solve the Euler equations in a rotor-fixed frame of reference using a finite volume method.

A computer program was developed and was then verified by comparison with wind-tunnel

data. In all cases considered, good agreement was found with available experimental data.

INTRODUCTION

The computational prediction of aerodynamic forces on three-dimensional lifting rotor

blades is the first step toward the computerized design of advanced rotors. It is apparent that

computational methods will play a major role in the design and analysis of future rotary-wing

vehicles (ref. 1). Several prediction methods (ranging from transonic small disturbance (refs. 2-

3), through transonic full-potential (refs. 4-10), to Euler (refs. 11-12) techniques) for calculat-

ing transonic flow over a rotor blade have recently been proposed. However, the development

of more accurate, efficient and robust methods will certainly continue until the viscous flow

field around an entire rotorcraft can be economically calculated.

In this paper, a new solution method is described for the numerical solution of the Euler

equations as applied to helicopter rotors. The method solves the three-dimensional Euler equa-

tions in a rotor-fixed frame of reference using a finite volume method. A computer program

based on this method is designated as TFAR3 in the Transonic Flow Analysis for Rotors (TFAR)

series of advanced computer codes developed at NASA Ames Research Center (refs. 5-6). The

TFAR3 code can be used to calculate the flow past a lifting rotor, in both hover and forward

flight, with the blade tip in a transonic flow regime. The geometry of the rotor blade can be

quite general. The usual helicopter design parameters such as shaft angle, collective pitch an-

gle, local twist angle, flapping angle, and variable tip shape are taken into account.

The TFAR3 code had been verified by comparison with wind-tunnel data (refs. 13-14).

To establish the usefulness of the code, computational results are presented for the following

cases in the hierarchy of flow-field complexity.

1. Nonlifting rotors in forward flight: computations were made for rotors with different

blade tip shapes.

2. Lifting rotors in hover: several comparisons were made for a two-bladed model rotor

in hover at different tip speeds.

3. Lifting rotors in forward flight: computations were made for a three-bladed lifting

model rotor in forward flight.

In all the cases considered, good agreement was found with published experimental data.

This is Part 3 of a series of planned publications under the same general title "Tran-

sonic Flow Analysis for Rotors." The author would like to thank Dr. Frank Caradonna and



Dr. CheeTungof theU. S.Army Aviation ResearchandTechnologyActivity, Aeroflightdy-
namicsDirectorate,for theircritical andfruitful discussionsandtheir generousassistancewith
therotorwakemodeling.

FLOW FIELD ANALYSIS PROBLEM

The rotor flow field is acknowledged to contain very complicated three-dimensional, un-

steady, and viscous flow phenomena. During each revolution, the rotor blade may enter a

transonic flow regime on the advancing side and may face boundary-layer separation on the re-

treating side. Moreover, the blade may encounter wakes shed from other blades with a complex

blade-vortex interaction. Because of these complexities, the entire problem cannot be modeled

with current computer capabilities. In this paper, we will focus on the advancing-blade side of

the rotor flow field, particularly on the transonic effects.

While the potential flow solutions have proved extremely useful for transonic flows with

shock waves of moderate strength, they are limited by an inherent inability to correctly predict

stronger shock jumps. Also, the roll-up of the near wake and the convection of tip vortices are

not easily modeled because a complex wake tracking is required. In this section we describe

the flow field analysis problem in terms of Euler equations and discuss the boundary conditions

at the outer computational boundaries.

Euler Equations in a Rotor-Fixed Reference Frame

Let the rotor-fixed frame of reference move with a constant linear velocity U and a constant

angular velocity f2 with respect to an inertial frame of reference. The relative velocity V of a

point fixed in the moving frame of reference is

V=U+f_xr

where r is the position vector. Let the ambient density p,_, speed of sound coo, and the reference

chord length be unity. The nondimensional Euler equations in this rotor-fixed frame of reference
are found to be

pt + V(pq_) = 0

(pq,)t + V(pq, q, +/9) + 2pf2 x q,. + pf_ x V + pVt = 0

(pE)t + _7(pHq,) + p( q, + V)Vt = 0 (1)

where qr is the velocity in the moving frame, p the density, p the pressure, E the total energy,

and H the total enthalpy. The absolute velocity in the inertial frame of reference is given by

q=qr+ V.

and

For a perfect gas,

P +lq .q _lv. VE- ('7- 1)p

H=E+ p-
P



where ,7 is the ratio of the specific heats and is equal to 1.4 for air.

The tangential flow boundary condition on the rotor blade surface is

qr .11,=0

where n is the unit vector normal to the surface. At the outer computational boundaries, non-

reflection boundary conditions as detailed in the next subsection are imposed.

Far-Field Boundary Condition

The boundary conditions at the far-field computational boundaries are derived by intro-

ducing Riemann invariants for one-dimensional flow normal to the boundaries.

The characteristic form of the one-dimensional Euler equations can be written as

pc[Or + (q_. n-F c)a,,](q . n) + [Or + (q, • n+ c)an]p + pc(_ x q. n) = 0

[ Ot + ( q_ • n)O,_]S = 0

where c is the speed of sound, n is the outward unit normal vector to the boundary, and S is the

entropy.

For local isentropic flow, let a thermodynamic quantity or(p) be defined by

then the first equation, after dividing through by pc, is reduced to be

[ Ot + (qr " n-l- c)O,_](q " n± a) + f2 xq-n=O

The quantities

f2xq
R +=q.n:l=cr+ "n(r.n)

q, • n+ c

which are called the Riemann invariants, are constant for the forward and backward character-

istics. The invariants are propagated with speeds q,. n+ c along the characteristics respectively.

Let subscripts oo and e denote the free-stream values and the values extrapolated from the in-

terior adjacent to the boundary. For ,,/-law gas, considering subsonic flow, the free-stream and

extrapolated Riemann invariants/_oo and Re at the outflow computational boundary are found

to be
2 coo

Roo = qoo • n + f
if-1

and
2 C e

R, = qe . n + _ + g
,7-1
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wheref andg aregivenby

and

X qoe'n
/= (r .n)

qr_ • n -- Coo

f_ x qe . n
g - (r.n)

qre " n + Ce

correspondingly, and r is the position vector. These may be combined to give

1

q.n= _(Re + I_- f -g)

and

('_- 1)
c- 4 (Re - R_ + f- g)

The quantities q • n and c are actually specified at the computational boundary. The other

components of velocity are then extrapolated from the interior through the following formula

q = qe + (q • n- qe • n)n

The entropy S is also extrapolated from the interior S = Sc for the outflow boundary. The

density, energy and pressure can then be calculated from the entropy and the speed of sound.

This procedure avoids specifying the pressure at the downstream boundary where it does not

necessarily recover its free-stream value because of the trailing wake.

The conditions at the inflow, the inner radial and the outer radial computational boundaries
can be derived in a similar manner.

For a computational region large enough to enclose the entire flow field about the whole

rotor and its wake, the above boundary value problem is complete. For a computational region

covering only a portion of the rotor disk, the flow effect caused by the other rotor blades and

the flow outside the finite computational region have to be incorporated into the boundary con-

ditions in some way. There are several methods of doing this. In the present work, this effect

will simply be supplied by the inflow angle correction technique (refs. 7,15).

The quasi-steady problem is defined as the solution of the flow equations (1) with all the

time derivative terms set equal to zero.

NUMERICAL SOLUTION PROCEDURE

Recently, efficient methods (refs. 16-19) for solving the Euler equations for steady flows

have been developed for fixed-wing applications. Because the aim of this study is to develop

a method for design work, the concern is for the easy applicability of the method to complex

configurations. One possible approach to meet this need is the finite volume method. The

Euler solver reported in references 19 and 20 has been adapted and modified for rotary-wing

applications.
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Finite Volume Scheme

The integral form of the Euler equation (1) can be written as

(2)

Here, W is the conserved quantity, F the flux term, G the forcing term, dr the volume element,

ds the surface element, and n the outward unit normal vector.

The discretization procedure follows the method of lines in decoupling the approximation

of the spacial and temporal terms. First, the computational domain in physical space is divided

into hexahedral cells. Equation (2) is then approximated in each cell separately. Let the depen-

dent variables be described at each center point (i, j, k) of the cells. A coupled set of ordinary

differential equations is then obtained

_( drW) + Q+ T= 0 (3)

where Q is the flux term and T is the forcing term. The cell volume d_- can be determined as

the sum of six tetrahedrons. Each of them can be evaluated by a simple formula as given in

reference 21.

The flux term is given by

Qid,k = E Fij,k • Aid,k
ceUsides

where Aij,k denotes the area of the cell face between the points (i, j, k) and (i + 1, j, k). The

face area can be determined as one-half of the vector product of the cell face diagonals. The

value of Fia,k at the cell face is taken as the average of F at the points (i, j, k) and (i + 1,

j, k). The use of centered differences ensures the scheme of second order accuracy in spatial

discretization, provided that the mesh is smooth enough.

At the blade surface, the only contribution to the flux balance comes from the pressure.

The normal pressure gradient at the wall can be estimated in terms of quantities which can be

determined from the interior solution as given in reference 22. The pressure on the blade is

then estimated by extrapolation from the pressure at the adjacent cell centers.

Dissipative Terms

To inhibit odd/even point decoupling and to prevent the appearance of wiggles in the re-

gions where pressure gradient is large, it is necessary to add artificial dissipative terms. Namely,

equation (3) is replaced by

d ( drW) + Q + - =T D 0 ( 4)



whereD is the dissipation term. An effective form for D is a blend of second and fourth order

differences with coefficients depending upon the second order difference of the local pressure.

Specifically, let u be defined by

Vij,k =
I Pi+ld,k -- 2pij,k + Pi-lj,k [

Pi+Ij,a + 2pij,k + Pi-l,i,k

This quantity is second order except in regions containing a large pressure gradient. The term

Did,k is constructed so that it is third order in smooth regions of flow and first order in the

vicinity of the shock wave. Dij,k has the form

D_,S,k = ( D= + D v + D,)w_,S,k

where w is p for the continuity equation, pq for the momentum equations, pE for the energy

equation, and D=, Dy and Dz are central difference operators in i-, j- and k-directions respec-

tively. Specifically, D= is defined by

Dxtoij,k = di+ l /2 j,k -- di_l l2 d,k

di+ 1/2 j,k --
dTi+ 1/2 ,j,k (2)

A t [ ei+l/2 ,j,kA=t°id,k

and A= is the forward difference operator given by

Azodij,k = toi+ 1 j,k -- tOij,k

The coefficient

e_2) = _(2)• l/2d,k • max(vi+ld,k, rid,k)

is made proportional to v. The other coefficient is given by

ei+l/2d,k max(O., m(4) (2)= -- _i+l/2,j,k )

The fourth order differences provide background dissipation throughout the computational

domain but are switched off in the neighborhood of the shock waves. The typical values of the

constants _(2) and _(4) are 1/4 and 1/256.

Runge-Kutta Scheme

If the cell volume dr is constant in time, the equation (4) has the form

Hit + ./:/(W) = Wt + P(W) + D(W) = 0

6
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where the residual R(W) consists of convective part P(W) and dissipative part D(W). A

class of Runge-Kutta four-stage time-stepping scheme can be employed to solve this system of

ordinary differential equations. It can be written as

W (°) = W'*

W (_) = W (o) _ oe_AtR (°)

W (2) = W (o) _ _x2AtR (1)

W (3) = W (°) _ a3AtR (2)

W(4) = W(o) _ oeaAtR (3)

W ,,+1 = W (4)

(6)

where A t is the time step, W '_ and W '_1 the value of W at the beginning and end of the n-th

time step, and in the (k+l)-th stage R (k) = P( W (k)) + D( W C°)). The dissipation is evaluated

once and then frozen after the first stage in each time step calculation. The choice of coefficients

determines the characteristics of the scheme. For single grid calculations, a good choice of the

coefficients is given by o_1 = .6, oe2 = .6, c_3 = 1., and o_4 = 1.

Residual Smoothing

One way to extend the stability range of the explicit scheme is to perform the implicit

residual smoothing. This process extends the domain of dependence and thus increases the

stability range of the scheme.

The residual smoothing is applied in product form

( 1 - rl, a2_) •( 1 - rlyO_) • ( 1 - rlka2_)-Rij,k = R,d,k

where, Rij,k is the residual before smoothing and-R_j,k is the new residual. The coefficients are

given by r/i = 1, r/j = l, and r/k = 1. Because it is only necessary to solve a sequence of tridiagonal

equations for scalar variables, this scheme requires a relatively small amount of computational

effort per time step. Comparatively, other implicit schemes usually need to solve a coupling

system with a much more costly block-tridiagonal solver. It is well known that a Runge-Kutta

scheme with properly tuned residual smoothing can be shown to be unconditionally stable based

on linear stability analysis (ref. 20). However, in practice, the fastest convergence to a steady

state solution is realized with a small time step.

Local Time Stepping

For a steady state problem, the convergence of the scheme can be accelerated by using

local time step. Namely, the solution advances in time with a time step size dictated by the

local stability limit. This allows faster signal propagation on coarse mesh regions and thus

faster convergence of the overall scheme. For single grid calculations, the use of local time

step of Courant-Friedrichs-Lewy (CFL) number 4.0 gives rise to a good convergence rate for

most cases.



Wake Modeling

For lifting rotor calculations, the wake effect and the blade motion are important. Because

at present only a single blade of a rotor is contained in the finite domain of the computer code,

a practical method is required to account for the far-field wake effect and other blade effects. A

basic approach to solve this problem is to divide the entire flow field into two parts. The blade

and its near wake will be modeled in the present code directly. The rest of the flow field which

lies outside of the computational domain will be modeled through a set of inflow angles along

the blade span at each azimuth position. This set of inflow angles can be furnished through

auxiliary helicopter wake analysis codes. Two wake prediction codes are employed in the

present study. For hover prediction, a linearized lifting surface code as reported in reference 23

is used. For forward flight prediction, a lifting line code as described in reference 24 is utilized.

This technique was originally reported in reference 15 and had been employed in several recent

papers (refs. 6, 8, 10).

RESULTS

Since only the coordinates in physical space of each grid point of the computational region

are needed in the finite volume scheme, the body aligned mesh can be generated by several

methods. The present computer code for a single rotor blade uses a simple C-type grid, which

can be generated by a combination of stretching and conformal mappings similar to that in

reference 5. Good solutions may be obtained by employing a grid of 129 points in streamwise,

33 points in normal, and 33 points in radial directions. The grid comprises 81 points on the

airfoil surface and 21 points on the span of the rotor blade. A typical calculation needs about

600 time steppings to obtain a good solution and will take less than 15 min of CPU time on the

Cray-XMP computer at Ames Research Center. For the same case, a multigrid calculation will

take about 100 cycles to get a comparably accurate solution and will take about 5 min of CPU

time on the same Cray-XMP computer.

The present calculations are mainly focused on transonic flows that occur on the

advancing-blade side of a rotor in forward flight. All these studies have been performed with

rigid blades in order to separate the aerodynamic and aeroelastic effects. A number of results

are presented for the flow problems that are typically encountered in rotor flow calculations.

Nonlifting Rotors in Forward Flight

The first set of calculations is concerned with the fundamental case of nonlifting rotors

for which there is no wake effect. Calculations were performed for model rotor blades with

straight-tip and swept-back tip planforms. Figure 1 shows the planform of an ONERA nonlift-

ing straight-tip model rotor blade (ref. 13). The surface pressure transducers are located at three

spanwise stations of .855, .892, and .946. In figures 2a-d, the computed surface pressure distri-

butions at these stations of the above blade are plotted and compared with ONERA measured

data at an azimuth position _, of 900 for moderate (0.4) to high (0.55) advance ratios #. The

tip Mach number ACT due to rotation for all the cases is 0.6. The results are quite satisfactory.

Figure 3 shows the planform of the same ONERA model blade but with swept-back 300 blade

tip. Figure 4 shows similar results for the model blade with this second blade tip at a tip Mach
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numberof 0.6288andadvanceratioof 0.5. Theeffectof thisswept-backtip is clearly seenas
asignificantreductionof thesuctionpeakoverwhatoccursfor acorrespondingunsweptcase
(fig. 2c).

Lifting Rotors in Hover

Calculations were made for a rigid two-bladed model rotor (ref. 14) in hover at various

tip speeds. This model rotor employs an untapered NACA 0012 airfoil section and has an

aspect ratio of 6. Calculations were performed for blades with a collective pitch angle 0c of 80

and at three different tip Mach numbers of .612, .794, and .877. Here, the wake effects were

calculated through a lifting surface code for hover prediction (ref. 23). Figures 5a-c show the

comparison of calculated and measured surface pressure distributions at three spanwise stations

of .80, .89, and .96 for the above three tip speeds. The overall agreement of surface pressure

distributions is excellent for these three different cases. The locations of shock waves and the

lower surface pressure distributions are predicted very well. The predictions of the surface

pressure distributions at the inner two spanwise stations, 0.5 and .68 (which are not shown in

this paper), are not as good as those at the outer spanwise stations. The disagreement may

result from the presence of two vortex lines in the near field which are not currently taken into

account.

Lifting Rotors in Forward Flight

For forward lifting flight calculation, the wake effects were obtained through a lifting line

code (ref. 24). Computed results have been compared with experimental data for an ONERA

three-bladed lifting model rotor at various high-speed forward flight conditions (ref. 13). Fig-

ure 6 shows the comparison of calculated and measured surface pressure distributions at three

spanwise stations of .852, .902, and .951 near the blade tip. The azimuthal angle is 90 0. The

tip Mach number is 0.6288 and the advance ratio # is 0.3872. The overall agreement of surface

pressure distributions is good. The discrepancies seen on the lower surface are presently not

understood, However, similar comparisons have been found with other codes (refs. 6, 10).

CONCLUDING REMARKS

A new solution method for calculating the inviscid, rotational, quasi-steady transonic flow

about helicopter rotors has been constructed. This method solves the conservation form of the

Euler equations in a rotor-fixed frame of reference by a finite volume method. Based on this

method, a three-dimensional Euler code was developed and validated. It has been shown that

the code can be employed to calculate the flow past a lifting rotor in hover as well as in forward

flight with the blade tip in a transonic flow regime. The geometry of the rotor blade can be

quite general. A number of cases have been solved by using this new computer code, and the

results were found to be accurate.
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Thetip vortex formation might be modeled by using this Euler code, and this possibility

will be studied in the future. Other future works include incorporating a known vorticity field

into the Euler calculation, and extending the current computer code to solve the Navier-Stokes

equations for viscous flow calculations.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, California 94035-1000, January 26, 1990
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Figure 1. - Planform geometry of an ONERA nonlifting model rotor blade with straight
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Figure 2. - Comparison of computed and measured surface pressure distributions for a

nonlifting straight-tip blade in forward flight. (a) Advance ratio of .4.
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Figure 2. - Continued. (b) Advance ratio of .45. (c) Advance ratio of .5.
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M T = 0.6, _ = 0.55, _ = 90 °
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Figure 2. - Concluded. (d) Advance ratio of .55.
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Figure 3. - Planform geometry of an ONERA nonlifting model rotor blade with swept-

back 300 tip.
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Figure 4. - Comparison of computed and measured surface pressure distributions for a

nonlifting swept-back-tip blade in forward flight.
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Figure 5. - Compartson Ca) Tip Mach number of .612. (b) Tip Mach number of .794.
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Figure 5. - Concluded. (c) Tip Mach number of .877.
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Figure 6. - Comparison of computed and measured surface pressure distributions for a

lifting three-bladed rotor in forward flight.
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